Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
3 Biotech ; 12(1): 19, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34926123

RESUMO

Erythrina velutina is a species of arboreal leguminous that occurs spontaneously in the northeastern states of Brazil. Leguminous seeds represent an abundant source of peptidase inhibitors, which play an important role in controlling peptidases involved in essential biological processes. The aim of this study was to purify and characterize a novel Kunitz-type peptidase inhibitor from Erythrina velutina seeds and evaluate its anti-proliferative effects against cancer cell lines. The Kunitz-type chymotrypsin inhibitor was purified from Erythrina velutina seeds (EvCI) by ammonium sulphate fractionation, trypsin- and chymotrypsin-sepharose affinity chromatographies and Resource Q anion-exchange column. The purified EvCI has a molecular mass of 18 kDa with homology to a Kunitz-type inhibitor. Inhibition assays revealed that EvCI is a competitive inhibitor of chymotrypsin (with K i of 4 × 10-8 M), with weak inhibitory activity against human elastase and without inhibition against trypsin, elastase, bromelain or papain. In addition, the inhibitory activity of EvCI was stable over a wide range of pH and temperature. Disulfide bridges are involved in stabilization of the reactive site in EvCI, since the reduction of disulfide bridges with DTT 100 mM abolished ~ 50% of its inhibitory activity. The inhibitor exhibited selective anti-proliferative properties against HeLa cells. The incubation of EvCI with HeLa cells triggered arrest in the cell cycle, suggesting that apoptosis is the mechanism of death induced by the inhibitor. EvCI constitutes an interesting anti-carcinogenic candidate for conventional cervical cancer treatments employed currently. The EvCI cytostatic effect on Hela cells indicates a promised compound to be used as anti-carcinogenic complement for conventional cervical treatments employed currently.

2.
Mem. Inst. Oswaldo Cruz ; 113(3): 178-184, Mar. 2018. graf
Artigo em Inglês | LILACS | ID: biblio-894904

RESUMO

BACKGROUND Members of the Bacteroides fragilis group are the most important components of the normal human gut microbiome, but are also major opportunistic pathogens that are responsible for significant mortality, especially in the case of bacteraemia and other severe infections, such as intra-abdominal abscesses. Up to now, several virulence factors have been described that might explain the involvement of B. fragilis in these infections. The secretion of extracellular membrane vesicles (EMVs) has been proposed to play a role in pathogenesis and symbiosis in gram-negative bacteria, by releasing soluble proteins and other molecules. In B. fragilis, these vesicles are known to have haemagglutination and sialidosis activities, and also contain a capsular polysaccharide (PSA), although their involvement in virulence is still not clear. OBJECTIVE The aim of this study was to identify proteins in the EMV of the 638R B. fragilis strain by mass spectrometry, and also to assess for the presence of Bfp60, a surface plasminogen (Plg) activator, previously shown in B. fragilis to be responsible for the conversion of inactive Plg to active plasmin, which can also bind to laminin-1. METHODS B. fragilis was cultured in a minimum defined media and EMVs were obtained by differential centrifugation, ultracentrifugation, and filtration. The purified EMVs were observed by both transmission electron microscopy (TEM) and immunoelectron microscopy (IM). To identify EMV constituent proteins, EMVs were separated by 1D SDS-PAGE and proteomic analysis of proteins sized 35 kDa to approximately 65 kDa was performed using mass spectrometry (MALDI-TOF MS). FINDINGS TEM micrographs proved the presence of spherical vesicles and IM confirmed the presence of Bfp60 protein on their surface. Mass spectrometry identified 23 proteins with high confidence. One of the proteins from the B. fragilis EMVs was identified as an enolase P46 with a possible lyase activity. MAIN CONCLUSIONS Although the Bfp60 protein was not detected by proteomics, α-enolase P46 was found to be present in the EMVs of B. fragilis. The P46 protein has been previously described to be present in the outer membrane of B. fragilis as an iron-regulated protein.


Assuntos
Bacteroides fragilis/enzimologia , Bacteroides fragilis/ultraestrutura , Eletroforese em Gel de Poliacrilamida , Fosfopiruvato Hidratase , Plasminogênio , Vesículas Extracelulares
3.
Mem Inst Oswaldo Cruz ; 113(3): 178-184, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29412357

RESUMO

BACKGROUND: Members of the Bacteroides fragilis group are the most important components of the normal human gut microbiome, but are also major opportunistic pathogens that are responsible for significant mortality, especially in the case of bacteraemia and other severe infections, such as intra-abdominal abscesses. Up to now, several virulence factors have been described that might explain the involvement of B. fragilis in these infections. The secretion of extracellular membrane vesicles (EMVs) has been proposed to play a role in pathogenesis and symbiosis in gram-negative bacteria, by releasing soluble proteins and other molecules. In B. fragilis, these vesicles are known to have haemagglutination and sialidosis activities, and also contain a capsular polysaccharide (PSA), although their involvement in virulence is still not clear. OBJECTIVE: The aim of this study was to identify proteins in the EMV of the 638R B. fragilis strain by mass spectrometry, and also to assess for the presence of Bfp60, a surface plasminogen (Plg) activator, previously shown in B. fragilis to be responsible for the conversion of inactive Plg to active plasmin, which can also bind to laminin-1. METHODS: B. fragilis was cultured in a minimum defined media and EMVs were obtained by differential centrifugation, ultracentrifugation, and filtration. The purified EMVs were observed by both transmission electron microscopy (TEM) and immunoelectron microscopy (IM). To identify EMV constituent proteins, EMVs were separated by 1D SDS-PAGE and proteomic analysis of proteins sized 35 kDa to approximately 65 kDa was performed using mass spectrometry (MALDI-TOF MS). FINDINGS: TEM micrographs proved the presence of spherical vesicles and IM confirmed the presence of Bfp60 protein on their surface. Mass spectrometry identified 23 proteins with high confidence. One of the proteins from the B. fragilis EMVs was identified as an enolase P46 with a possible lyase activity. MAIN CONCLUSIONS: Although the Bfp60 protein was not detected by proteomics, α-enolase P46 was found to be present in the EMVs of B. fragilis. The P46 protein has been previously described to be present in the outer membrane of B. fragilis as an iron-regulated protein.


Assuntos
Bacteroides fragilis/enzimologia , Vesículas Extracelulares/enzimologia , Fosfopiruvato Hidratase/análise , Bacteroides fragilis/ultraestrutura , Eletroforese em Gel de Poliacrilamida , Vesículas Extracelulares/ultraestrutura , Humanos , Laminina , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Fosfopiruvato Hidratase/metabolismo , Plasminogênio
4.
J Agric Food Chem ; 62(6): 1283-93, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24377746

RESUMO

Soybeans have several functional properties due to their composition and may exert beneficial health effects that are attributed to proteins and their derivative peptides. The present study aimed to analyze the protein profiles of four new conventional soybean seeds (BRS 257, BRS 258, BRS 267, and Embrapa 48) with the use of proteomic tools. Two-dimensional (2D) and one-dimensional (1D) gel electrophoreses were performed, followed by MALDI-TOF/TOF and ESI-Q-TOF mass spectrometry analyses, respectively. These two different experimental approaches allowed the identification of 117 proteins from 1D gels and 46 differentially expressed protein spots in 2D gels. BRS 267 showed the greatest diversity of identified spots in the 2D gel analyses. In the 1D gels, the major groups were storage (25-40%) and lipid metabolism (11-25%) proteins. The differences in protein composition between cultivars could indicate functional and nutritional differences and could direct the development of new cultivars.


Assuntos
/química , Proteômica , Sementes/química , Proteínas de Soja/análise , Eletroforese em Gel de Poliacrilamida , Especificidade da Espécie , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...